757 research outputs found

    Thermal resistance of PCD materials with borides bonding phase

    No full text
    In these studies, one group of PCD materials was prepared using diamond powder and 10 wt % of TiB₂ and the second batch of the PCD material was prepared using a mixture of diamond powder with 5 wt % of TiB₂ and 2 wt % of Co. The materials have been sintered using a Bridgman-type high-pressure apparatus at 8.0±0.2 GPa, at a temperature of 2000±50 °C. Thermogravimetric (TG) measurements and Differential Thermal Analysis (DTA) have been carried out for diamond micropowders, TiB₂ bonding phase, and sintered composites. The coefficients of friction for diamond composites in a sliding contact with an Al₂O₃ ceramic ball have been determined from the room temperature up to 800 °C. Material phase compositions were analyzed for initial samples and after wear tests, at the temperature of 800 °C. Raman spectra of diamond composites with borides bonding phases, observed for the first-order zone centre modes of diamond and graphite during the heating up to 800 °C in air have been presented. Thermal properties have been compared with the commercial diamond-cobalt PCD. It has been found that diamond with TiB₂ and Co is the most resistant to the hardness changes at elevated temperatures and this material maintains the high hardness value up to 800 °C but it has a high coefficient of friction.Досліджено полікристалічні алмазні композити – одну групу матеріалів було приготовано з використанням алмазного порошку і 10 % (за масою) TiB₂, а другу – з алмазного порошку, 5 % (за масою) TiB₂ і 2 % (за масою) Co. Матеріали було спечено в апараті високого тиску типу Бріджмена при тиску 8,0±0,2 ГПа і температурі 2000±50 °С. Термогравіметричні вимірювання та диференційний термічний аналіз було проведено для алмазних мікропорошків, зв’язуючої фази TiB₂ і спечених композітов. Визначено коефіцієнти тертя для алмазних композитів при ковзному контакті з кулькою з кераміки Al₂O₃ при температурі від кімнатної до 800 °С. Фазові склади матеріалів проаналізовано для вихідних зразків і після їх випробування на знос при температурі 800 °С. Представлено спектри комбінаційного розсіювання алмазних композитів зі зв’язуючими фазами боридів, що спостерігаються в центрі зони першого порядку алмазу і графіту в процесі нагрівання до 800 °С на повітрі. Порівнювали термічні властивості отриманих полікристалічних алмазних композитів і промислового композита алмаз–кобальт. Було виявлено, що алмаз з TiB₂ і Co є найбільш стійким до змін твердості при підвищених температурах і зберігає високу твердість до 800 °С, але має високий коефіцієнт тертя.Исследованы поликристаллические алмазных композиты – одна группа материалов была приготовлена с использованием алмазного порошка и 10 % (по массе) TiB₂, а вторая – из алмазного порошка, 5 % (по массе) TiB₂ и 2 % (по массе) Co. Материалы были спечены в аппарате высокого давления типа Бриджмена при давлении 8,0±0,2 ГПа и температуре 2000±50 °С. Термогравиметрические измерения и дифференциальный термический анализ были проведены для алмазных микропорошков, связующей фазы TiB₂ и спеченных композитов. Определены коэффициенты трения для алмазных композитов при скользящем контакте с шариком из керамики Al₂O₃ при температуре от комнатной до 800 °С. Фазовые составы материалов проанализированы для исходных образцов и после их испытания на износ при температуре 800 °С. Представлены спектры комбинационного рассеяния алмазных композитов со связующими фазами боридов, наблюдаемые в центре зоны первого порядка алмаза и графита в процессе нагрева до 800 °С на воздухе. Сравнивали термические свойства полученных поликристаллических алмазных композитов и промышленного поликристаллического композита алмаз–кобальт. Было обнаружено, что алмаз с TiB₂ и Co является наиболее устойчивым к изменениям твердости при повышенных температурах и сохраняет высокую твердость до 800 °С, но имеет высокий коэффициент трения

    Влияние высоких давлений и температур на структуру и свойства нанокристаллического нитрида титана

    No full text
    Изучено влияние давления компактирования, вакуумного отжига заготовок и температуры спекания под высоким давлением на уплотнение и свойства нанокристаллического TiN. Установлено, что давление предварительного компактирования 0.2–0.6 GPa является наиболее оптимальным для достижения высокой плотности образцов, спеченных при давлении 3.5 GPa. Показано, что вакуумная дегазация порошковых заготовок перед спеканием в аппарате высокого давления (АВД) позволяет повысить максимальную плотность спеченных образцов на 1–2%. Исследования микротвердости и микроструктуры показали, что рекристаллизация изучаемого материала начинается при температуре около 1100°С.Вивчено вплив тиску компактування, вакуумного відпалу заготовок і температури спікання під високим тиском на ущільнення та властивості нанокристалічного TіN. Встановлено, що тиск попереднього компактування 0.2–0.6 GPa є найбільш оптимальним для досягнення високої щільності зразків, які спікалися під тиском 3.5 GPa. Показано, що вакуумна дегазація порошкових заготовок перед спіканням в апараті високого тиску (АВТ) дозволяє підвищити максимальну щільність спечених зразків на 1–2%. Дослідження мікротвердості та мікроструктури показали, що рекристалізація досліджуваного матеріалу починається за температури близько 1100°С.The effect of compacting, vacuum anneal of the billets and the temperature of sintering under high pressure on the consolidation and properties of nano-crystal TiN has been studied. It has been established that the pressure of preliminary compacting of 0.2–0.6 GPa is optimal one for achievement of high density of the samples sintered under pressure of 3.5 GPa. It was shown that vacuum degassing of powder billets before sintering in highpressure device allowed the authors to increase maximal density of the sintered samples by 1–2%. The study of microhardness and microstructure demonstrated that re-crystallization of the studied material started at the temperature about 1100°C

    Wettability and reactivity of ZrB2 substrates with liquid Al

    Get PDF
    Wetting characteristics of the Al/ZrB2 system were experimentally determined by the sessile drop method with application of separate heating of the ZrB2 and Al samples and combined with in situ cleaning of Al drop from native oxide film directly in vacuum chamber. The tests were performed in ultrahigh vacuum of 10−6 mbar at temperatures 710, 800, and 900 °C as well as in flowing inert gas (Ar) atmosphere at 1400 °C. The results evidenced that liquid Al does not wet ZrB2 substrate at 710 and 800 °C, forming high contact angles (θ) of 128° and 120°, respectively. At 900 °C, wetting phenomenon (θ < 90°) occurs in 29th minute and the contact angle decreases monotonically to the final value of 80°. At 1400 °C, wetting takes place immediately after drop deposition with a fast decrease in the contact angle to 76°. The solidified Al/ZrB2 couples were studied by scanning and transmission electron microscopy coupled with x-ray energy diffraction spectroscopy. Structural characterization revealed that only in the Al/ZrB2 couple produced at the highest temperature of 1400 °C new phases (Al3Zr, AlB2 and α-Al2O3) were formed

    Powder Bed Fusion Additive Manufacturing Using Critical Raw Materials: A Review.

    Get PDF
    The term "critical raw materials" (CRMs) refers to various metals and nonmetals that are crucial to Europe's economic progress. Modern technologies enabling effective use and recyclability of CRMs are in critical demand for the EU industries. The use of CRMs, especially in the fields of biomedicine, aerospace, electric vehicles, and energy applications, is almost irreplaceable. Additive manufacturing (also referred to as 3D printing) is one of the key enabling technologies in the field of manufacturing which underpins the Fourth Industrial Revolution. 3D printing not only suppresses waste but also provides an efficient buy-to-fly ratio and possesses the potential to entirely change supply and distribution chains, significantly reducing costs and revolutionizing all logistics. This review provides comprehensive new insights into CRM-containing materials processed by modern additive manufacturing techniques and outlines the potential for increasing the efficiency of CRMs utilization and reducing the dependence on CRMs through wider industrial incorporation of AM and specifics of powder bed AM methods making them prime candidates for such developments

    Mechanical properties of diamond–TiB2 composites

    No full text
    The presented paper characterizes the basic mechanical and physical properties of sintered diamond-titanium diboride (submicro) and diamond-titanium diboride (nano) composites. The effect of reduction of powder size from the submicron scale to the nano scale of the ceramic bonding phase (TiB₂) in diamond composites on selected mechanical properties (Young’s modulus, Vickers hardness, fracture toughness, coefficient of friction) has been reported. Composites were prepared from initial powders of diamond (MDA36, Element Six) with addition of 10 mass % submicron TiB₂ (H.C. Starck F) and 10 mass % nanopowder TiB₂ (American Elements). Compacts were sintered at pressure 8±0,5 GPa and 2233±50 K using the high pressure-high temperature Bridgman type apparatus. These investigations allow the possibility of using this materials to be enhacced as ceramic tool materials, in particular as burnishing tools.Наведені основні механічні та фізичні властивості спечених композитів на основі алмазу з додаванням субмікро- та нано-дибориду титану. Вивчено вплив розміру частинок порошку від субмікронного до нано-рівня в керамічній (TiB₂) складовій алмазних композитів на їх механічні властивості (модуль Юнга, твердість за Віккерсом, в'язкість руйнування, коефіцієнт тертя). Композити були отримані з вихідних порошків алмазу (MDA36, Element Six) з додаванням 10 мас. % субмікронного TiB₂ (HC Starck F) або 10 мас. % нанопорошку TiB₂ (American Elements). Зразки спечені при тиску 8±0,5 ГПа і температурі 2233±50 К в апараті високого тиску типу тороїд. Результати досліджень вказують на можливість використання одержаних композитів як інструментальних матеріалів підвищеної якості, зокрема в інструментах для вигладжування.Приведены основные механические и физические свойства спеченных композитов на основе алмаза с добавками субмикро- и нано-диборида титана. Изучено влияние размера частиц порошка от субмикронного до нано-уровня в керамической (TiB₂) составляющей алмазных композитов на их механические свойства (модуль Юнга, твердость по Виккерсу, вязкость разрушения, коэффициент трения). Композиты были получены из исходных порошков алмаза (MDA36, Element Six) с добавлением 10 масс. % субмикронного TiB₂ (HC Starck F) или 10 масс. % нанопорошка TiB₂ (American Elements). Образцы были спечены при давлении 8±0,5 ГПа и температуре 2233±50 К в аппарате высокого давления типа тороид. Результаты исследований указывают на возможность использования полученных композитов в качестве улучшенных инструментальных материалов, в частности в выглаживающих инструментах

    Novel hydrogel obtained by chitosan and dextrin-VA co-polymerization

    Get PDF
    A novel hydrogel was obtained by reticulation of chitosan with dextrin enzymatically linked to vinyl acrylate (dextrin-VA), without cross-linking agents. The hydrogel had a solid-like behaviour with G′ (storage modulus) >> G″ (loss modulus). Glucose diffusion coefficients of 3.9 × 10−6 ± 1.3 × 10−6 cm2/s and 2.9 × 10−6 ± 0.5 × 10−6 cm2/s were obtained for different substitution degrees of the dextrin-VA (20% and 70% respectively). SEM observation revealed a porous structure, with pores ranging from 50 µm to 150 µm

    AMBIT RESTful web services: an implementation of the OpenTox application programming interface

    Get PDF
    The AMBIT web services package is one of the several existing independent implementations of the OpenTox Application Programming Interface and is built according to the principles of the Representational State Transfer (REST) architecture. The Open Source Predictive Toxicology Framework, developed by the partners in the EC FP7 OpenTox project, aims at providing a unified access to toxicity data and predictive models, as well as validation procedures. This is achieved by i) an information model, based on a common OWL-DL ontology ii) links to related ontologies; iii) data and algorithms, available through a standardized REST web services interface, where every compound, data set or predictive method has a unique web address, used to retrieve its Resource Description Framework (RDF) representation, or initiate the associated calculations

    Diamond-max ceramics bonding phase composites – phases and microstructure analysis

    Get PDF
    The possibility for improving the thermal stability of polycrystalline materials based on diamond (PCD) is to reduce the content of cobalt. Diamond compacts without cobalt phases with Ti3₃iC₂ і Cr₂AlC prepared using the method of self-propagating high-temperature synthesis (SHS). The resulting compacts with 20 wt. % of the above phases were exposed to high pressure and temperature in order to further consolidate the structure by sintering. Sintering was performed at 8±0.2 GPa and 1950±50 °C. Phase composition and microstructural study of the original compacts and the composites made by X-ray diffraction (XRD) and scanning electron microscopy (SEM).Одна з можливостей підвищення термостійкості полікристалічних матеріалів на основі алмазу (PCD) полягає в зменшенні вмісту в них кобальту. Алмазні компакти без кобальту з фазами Ti3₃iC₂ і Cr₂AlC отримували з використанням методу само поширюваного високотемпературного синтезу (SHS). Отримані компакти з 20 мас. % зазначених фаз піддавали дії високого тиску і температури з метою подальшої консолідації структури шляхом спікання. Процес спікання здійснювали при 8 ± 0,2 ГПа и 1950 ± 50 °С. Фазовий склад і мікроструктурні дослідження вихідних компактів і отриманих композитів виконані методами рентгенівської дифрактометрії (XRD) і скануючої електронної мікроскопії (SEM).Одна из возможностей повышения термостойкости поликристаллических материалов на основе алмаза (PCD) заключается в снижении содержания в них кобальта. Алмазные компакты без кобальта с фазами Ti3₃iC₂ и Cr₂AlC получали с использованием метода самораспространяющегося высокотемпературного синтеза (SHS). Полученные компакты с 20 % по мас. указанных фаз подвергали воздействию высокого давления и температуры с целью дальнейшей консолидации структуры путем спекания. Процесс спекания осуществляли при 8 ± 0,2 ГПа и 1950 ± 50 °С. Фазовый состав и микроструктурные исследования исходных компактов и полученных композитов выполнены методами рентгеновской дифрактометрии (XRD) и сканирующей электронной микроскопии (SEM)

    Composites of the cBN–Si₃N₄ system reinforced by SiCw for turning tools

    No full text
    The cBN–Si₃N₄–SiCw composites with different SiCw contents up to 20 vol % have been produced at high pressure of 8.0 GPa and high temperature of 2500 K. It has been defined that the Young modulus of the composites were within 740–846 GPa, the Vickers hardness and fracture toughness values were 37.5–42.0 GPa and 11.4–12.9 MPa∙m¹/², respectively. An important feature of the composite microstructure is the breaking of SiCw as a result of HPHT action. It has been shown that at the addition of 10 vol % SiCw to the structure of a cBN–Si₃N₄ composite the interrupted turning of hardened steel results in the flank wear reduction up to 20%.В условиях высокого давления 8,0 ГПа и высокой температуры 2500 К были получены композиты cBN–Si₃N₄–SiCw с различным содержанием компоненты SiCw до 20 % (по объему). Модуль Юнга находится в интервале 740–846 ГПа. Твердость по Викерсу и трещиностойкость соответственно имеют значения в интервале 37,5–42,0 ГПа и 11,4–12,9 МПа∙м¹/². Характерной особенностью микроструктуры композита является наличие разрушенных SiC-усов, как результат воздействия высокого давления. Разработана методика тестирования образцов при прерывистом точении. Испытания образцов при прерывистом точении высокотвердых сталей показывают, что добавка SiC-усов в количестве 10 % (по объему) в структуре композита cBN–Si₃N₄–SiCw приводит к снижению износа режущей кромки до 20 %.В умовах високого тиску 8,0 ГПа і високої температури 2500 К було отримано композити cBN–Si₃N₄–SiCw з різним вмістом компоненти SiCw до 20 % (за об’ємом). Модуль Юнга знаходиться в інтервалі 740–846 ГПа. Твердість за Вікерсом і тріщиностійкість відповідно мають значення в інтервалі 37,5–42,0 ГПа і 11,4– 12,9 МПа∙м¹/². Характерною особливістю мікроструктури композиту є наявність зруйнованих SiC-вусів, як результат впливу високого тиску. Розроблено методику тестування зразків при переривчастому точінні. Випробування зразків при переривчастому точінні високотвердих сталей показують, що добавка SiC-вусів в кількості 10 % (за об’ємом) у структурі композиту cBN–Si₃N₄–SiCw приводить до зниження зносу ріжучої кромки до 20 %
    corecore